Excited scientists announced Thursday they have detected gravitational waves — distortions in space-time — from the collision of two black holes 1.3 billion years ago.
It’s a discovery that was widely predicted but never actually proven, and it confirms many of Albert Einstein’s theories about the universe.
“Ladies and gentlemen, we have detected gravitational waves,” David Reitze, executive director of Caltech’s twin Laser Interferometer Gravitational-Wave Observatory (LIGO) laboratory, said at a news conference in Washington, D.C.
“We did it!” Reitze said to an unusual standing ovation.
“These gravitational waves were produced by two colliding black holes that merged to form a single black hole 1.3 billion years ago.”
Such a collision has never been seen before. Black holes are powerful objects, collapsed stars that pull in vast quantities of matter and concentrate them into a very small area.
These two were about 150 km, just under 100 miles, in diameter. “Pack 30 times the mass of the sun into that,” Reitze said. “Accelerate it to about half the speed of light.”
Two of these massive, fast-moving objects circled one another, crashed, and merged to form a single black hole.
“That’s what we saw here. It’s mind-boggling,” Reitze said.
It was a monstrous collision, so big that it literally shook the fabric of space-time.
These waves then spread a little bit like ripples expanding from the plunk of a pebble in water.
“It goes right through matter, right though stars,” Reitze said. After 1.3 billion years, across trillions of miles of space, the waves are infinitesimally small — 1/1000th the size of a proton, a subatomic particle.
But these small waves still stretch and compress space. It took special detectors — the LIGO system — to detect these tiny, tiny ripples.
“You can see that the Earth is jiggling like jello,” Reitze said.
“The description of this observation is beautifully described in the Einstein theory of general relativity formulated 100 years ago and comprises the first test of the theory in strong gravitation. It would have been wonderful to watch Einstein’s face had we been able to tell him,” Rainer Weiss, an emeritus professor of physics at MIT who was part of the team that originally proposed building LIGO, said in a statement.
“With this discovery, we humans are embarking on a marvelous new quest: the quest to explore the warped side of the universe — objects and phenomena that are made from warped spacetime,” added Kip Thorne, Caltech’s Richard P. Feynman Professor of Theoretical Physics.
It’s really hard to detect these tiny movements, so researchers built LIGO, a pair of 2.5 mile long, L-shaped interferometers that use laser light split into two beams that travel back and forth down its arms. They monitor the distance between mirrors precisely positioned at the ends of the arms. Gravitational waves would move the mirrors just slightly.
Having one in Louisiana and one in Hanford, Washington, helps satisfy scientists that what is making the mirrors wiggle is coming from off the planet.









